South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 2 (2021), pp. 153-164

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

OPERATION APPROACHES ON SPECIFIC OPEN SETS

P. Gnanachandra and A. Muneesh Kumar

Centre for Research and Post Graduate Studies in Mathematics, Ayya Nadar Janaki Ammal College, Sivakasi, Tamil Nadu, INDIA

E-mail: pgchandra07@gmail.com, muneeshkumarar@gmail.com

(Received: Sep. 18, 2020 Accepted: Jul. 23, 2021 Published: Aug. 30, 2021)

Abstract: In this paper, we shall define the properties for arbitrary topological spaces such as $\alpha_{(\lambda,\lambda')}$ -connected spaces and μ_{Ω} -compact spaces and shall prove the appropriate theorems with counter examples. Also we established that, $\alpha_{(\lambda,\lambda')}$ -locally connectedness is an $\alpha_{(\lambda,\lambda')}$ -open hereditary and we conclude that γ -operation defined by Ogata is an restriction of λ -operation.

Keywords and Phrases: $\alpha_{(\lambda,\lambda')}$ -open sets, $\alpha_{(\lambda,\lambda')}$ -connected spaces, Ω -open sets, μ_{Ω} -open sets and μ_{Ω} -compact spaces.

2020 Mathematics Subject Classification: 54A05, 54A15, 54B17.

1. Introduction

In 1979, Kasahara [15] initiated the concept of an operator (α) associated to a topology and gave some definitions which are equivalent to the usual ones when the operator involved is the identity operator. In 1991, Ogata [24] called the operation α as γ -operation on τ and defined and investigated the concept of operation-open sets, that is γ -open sets. He defined the complement of a γ -open subset of a space X as γ -closed. He also proved that the union of any collection of γ -open sets is γ -open but the intersection of any two γ -open sets need not be γ -open. Therefore the collection of γ -open sets need not be a topology on X. Krishnan. et al. [17] and [18] defined two types of sets called γ -preopen and γ -semiopen sets of a topological space (X, τ) respectively. Kalaivani. et al. [14] defined the notion of α - γ -open sets. Basu. et al. [8] used the operation γ to introduce γ - β -open sets. Also Carpintero. et al. [10] defined the notation of γ -b-open sets of a topological

space (X,τ) . In 2013, Barvan A. Asaad. et al. [3] initiated a new class of sets called γ -regular open sets in a topological space (X,τ) with an operation γ on τ together with its complement which is γ -regular closed. Also they defined a new space called γ -extremally disconnected and obtained several characterizations for γ -extremally disconnected spaces by utilizing γ -regular open sets and γ -regular closed sets. In 1965, Njastad [23] defined and investigated a new class of generalized open sets in a topological space called α -open sets. H. Z. Ibrahim [13] established and discussed an operation of a topology $\alpha O(X)$ into the power set $\mathcal{P}(X)$ of a space X and also he introduced the concept of α_{γ} -open sets. In 1992, Umehera. et al. [27] defined and discussed the properties of (γ, γ') -open sets. Khalaf. et al. [16] initiated the notion of $\alpha O(X, \tau)_{(\gamma, \gamma')}$, which is the collection of all $\alpha_{(\gamma, \gamma')}$ -open sets in a topological space (X, τ) . In 2018, Hariwan Zikri Ibrahim [12] defined and investigated the idea of $\alpha O(X,\tau)_{(\gamma,\gamma')}$ which is the assortment of all $\alpha_{(\gamma,\gamma')}$ -open sets by using the operations γ and γ' on a topological space $\alpha O(X,\tau)$. Levine [26] initiated the concept of semi-open sets in topology. In 1987, Bhattacharyya. et al. [9] used semi-open sets to define the notion of semi-generalized closed sets. Assad [2] initiated and discussed the notion of an operation γ on the class of generalized open sets in (X,τ) and studied some of its applications. In 2017 - 2018, Ahmad and Assad ([1], [5]) introduced an operation γ on the class of semi-generalized open sets of X and discussed some types of separation axioms, functions and closed spaces with respect to γ . Asaad and Ameen [6] introduced an operation on the class of generalized α - open sets and studied some of its properties. Recently, Assad et al. introduced the notion of an operation γ on the class of supra open sets in topological spaces, and investigated some important properties of it. The concept Ω -closed set was instigated and discussed by Lellis Thivagar [19]. In 2019, Meenarani. et al. [21] defined the concept of an operation γ which was extended to the class of Ω -open sets and it leads to the initiation of the notion of γ_{Ω} -open sets on a topological spaces (X,τ) and derivation of some basic properties of γ_{Ω} closure. The definition of connectedness for a space is natural one and the notion of connectedness is not nearly so natural as that of compactness. In this paper, we define $\alpha_{(\lambda,\lambda')}$ -connected spaces and we study μ_{Ω} -compact spaces associated with a topology. Also we examine some characterizations of $\alpha_{(\lambda,\lambda')}$ -connected spaces and give some properties of μ_{Ω} -compact spaces using stable operator.

2. Preliminaries

Definition 2.1. Let (X, τ) be a topological space and let M be a subset of X. Then M is α -open if $M \subset int(cl(int(M)))$. The collection of all α -open sets is denoted by $\alpha O(X)$.

Definition 2.2. A mapping $\lambda : \alpha O(X) \mapsto \mathcal{P}(X)$ is an operation if $M \subset \lambda(M)$ for all $M \in \alpha O(X)$, where $\lambda(M)$ is the value of λ at M.

Definition 2.3. Let (X,τ) be a topological space and let $M \subset X$. Then M is

- (1) (λ, λ') -open [21] $(\alpha_{(\lambda, \lambda')}$ -open [7]) if for all $x \in M$, there exist open sets (respectively α -open sets) P and Q containing x such that $\lambda(P) \cup \lambda'(Q) \subset M$.
- (2) $[\lambda, \lambda']$ open [21] $(\alpha_{[\lambda, \lambda']}$ -open [21]) if for all $x \in M$, there exist open sets (respectively α - open sets) P and Q containing x such that $\lambda(P) \cap \lambda'(Q) \subset M$.

The following example shows that open and $\alpha_{(\lambda,\lambda')}$ -open are independent.

Example 2.4. Let $X = \{1, 2, 3, 4\}$ and let $\tau = \{\emptyset, X, \{4\}, \{2, 4\}, \{3, 4\}, \{1, 2, 4$ $\{2,3,4\}$ be a topology on X. Define the operations λ and λ' by

$$\lambda(M) = \begin{bmatrix} M & \text{if } M \in \{\{1,4\},\{1,3,4\}\} \\ cl(M) & \text{otherwise} \end{bmatrix}$$
 and $\lambda'(M) = \begin{bmatrix} cl(M) & \text{if } M = \{2,4\} \\ M & \text{if } M \neq \{2,4\} \end{bmatrix}$. Here $\{2,4\}$ is open but not $\alpha_{(\lambda,\lambda')}$ -open and $\{1,4\}$ is $\alpha_{(\lambda,\lambda')}$ -open but not open.

3. $\alpha_{(\lambda,\lambda')}$ -Connected Spaces

Using $\alpha_{(\lambda,\lambda')}$ -open sets, we define $\alpha_{(\lambda,\lambda')}$ -connected spaces and examine some of its characterizations.

Definition 3.1. A topological space (X, τ) with operations λ and λ' on $\alpha O(X)$ is $\alpha_{(\lambda,\lambda')}$ -connected if there is no disjoint pair M and N of $\alpha_{(\lambda,\lambda')}$ -open sets such that $M \cup N = X$.

Example 3.2.

- (1) In (R,τ) where R is the set of real numbers and τ is the usual topology on R, the α -open sets are of the form (a,b). Define $\lambda = \lambda' : \alpha O(X) \to \mathcal{P}(X)$ by $\lambda(M) = \lambda'(M) = M$ for all $M \in \alpha O(X)$. In this topological space the $\alpha_{(\lambda,\lambda')}$ -open sets are of the form (a,b). Therefore there does not exists a pair of disjoint $\alpha_{(\lambda,\lambda')}$ -open sets M and N such that $M \cup N = X$. Thus (R,τ) is $\alpha_{(\lambda,\lambda')}$ -connected.
- (2) R with lower limit topology is not $\alpha_{(\lambda,\lambda')}$ -connected under the same operations λ and λ' defined in the above example because the $\alpha_{(\lambda,\lambda')}$ -open sets are of the form (a,b) and [a,b). Therefore $(-\infty,1)\cap[1,\infty)=\emptyset$ and $(-\infty,1)\cup[1,\infty)=\emptyset$ R.

Definition 3.3. Let (X,τ) be a topological space and $Y \subset X$. Then the collection of $\alpha_{(\lambda,\lambda')}$ -open sets in Y is $\tau_{\alpha_{(\lambda,\lambda')Y}} = \{Y \cap M : M \text{ is } \alpha_{(\lambda,\lambda')}\text{-open in } X\}.$

Remark 3.4.

- (a) A topological space (X, τ) is $\alpha_{(\lambda, \lambda')}$ -disconnected if and only if there exists a non-empty subset M of X which is both $\alpha_{(\lambda, \lambda')}$ -open and $\alpha_{(\lambda, \lambda')}$ -closed.
- (b) Union of $\alpha_{(\lambda,\lambda')}$ -connected subsets of X having a point in common is $\alpha_{(\lambda,\lambda')}$ -connected.
- (c) Let P be a $\alpha_{(\lambda,\lambda')}$ -connected subset of X and $M \subset X$ such that $P \subset M \subset \alpha_{(\lambda,\lambda')}$ -cl(P). Then M is $\alpha_{(\lambda,\lambda')}$ -connected.

Definition 3.5. For a subset M of a topological space X, the $\alpha_{(\lambda,\lambda')}$ -boundary of M is equal to $\alpha_{(\lambda,\lambda')}$ - $cl(M) \cap \alpha_{(\lambda,\lambda')}$ - $cl(M^c)$.

In example 3.2, let M = (-2, 0). Then the boundary of M is $\{-2, 0\}$.

The following theorem gives a characterization for $\alpha_{(\lambda,\lambda')}$ -connectedness in terms of $\alpha_{(\lambda,\lambda')}$ -boundary.

Theorem 3.6. A topological space (X, τ) is $\alpha_{(\lambda, \lambda')}$ -connected if and only if every non-empty proper subset of X has a non-empty $\alpha_{(\lambda, \lambda')}$ -boundary.

Proof. Assume that (X, τ) is $\alpha_{(\lambda, \lambda')}$ -connected. Let M be a proper non-empty proper subset of X such that M has empty $\alpha_{(\lambda, \lambda')}$ -boundary. Then $\alpha_{(\lambda, \lambda')}$ -cl $(M) \cap \alpha_{(\lambda, \lambda')}$ -cl $(X \setminus M) = \emptyset$.

$$\Rightarrow \alpha_{(\lambda,\lambda')}\text{-cl}(M) \subset X \setminus \alpha_{(\lambda,\lambda')}\text{-cl}(X \setminus M)$$

$$\Rightarrow M \subset \alpha_{(\lambda,\lambda')}\text{-cl}(M) \subset \alpha_{(\lambda,\lambda')}\text{-int}(M) \subset M.$$

$$\Rightarrow M = \alpha_{(\lambda,\lambda')}\text{-cl}(M) = \alpha_{(\lambda,\lambda')}\text{-int}(M).$$

Therefore M is both $\alpha_{(\lambda,\lambda')}$ -open and $\alpha_{(\lambda,\lambda')}$ -closed. That is X is not $\alpha_{(\lambda,\lambda')}$ -connected which is a contradiction.

Conversely, Suppose X is $\alpha_{(\lambda,\lambda')}$ -disconnected. Then X has a proper subset M which is both $\alpha_{(\lambda,\lambda')}$ -open and $\alpha_{(\lambda,\lambda')}$ -closed.

$$\Rightarrow \quad \alpha_{(\lambda,\lambda')}\text{-cl}(M) = M \text{ and } \alpha_{(\lambda,\lambda')}\text{-cl}(X\backslash M) = X\backslash M$$
$$\Rightarrow \quad \alpha_{(\lambda,\lambda')}\text{-cl}(M) \cap \alpha_{(\lambda,\lambda')}\text{-cl}(X\backslash M) = \emptyset.$$

which is a contradiction. Therefore X is $\alpha_{(\lambda,\lambda')}$ -connected.

Definition 3.7. $\alpha_{(\lambda,\lambda')}$ -component of X is a maximal $\alpha_{(\lambda,\lambda')}$ -connected subset of X.

Example 3.8. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, c\},$

 $\{b,c\}, \{a,b,c\}\}$. Define λ and λ' on $\alpha O(X)$ by

$$\lambda(M) = \begin{cases} \operatorname{cl}(M) & \text{if } d \in M \\ M & \text{if } d \notin M \end{cases}$$

and

$$\lambda'(M) = \begin{cases} M & \text{if } d \in M \\ \text{cl (M)} & \text{if } d \notin M \end{cases}$$

In this topological space $\{a,b,c\}$ is not $\alpha_{(\lambda,\lambda')}$ -component while $\{a,c,d\}$ is $\alpha_{(\lambda,\lambda')}$ -component of X.

Theorem 3.9. For a topological space (X, τ) , the following conditions hold

- (a) There is exactly one $\alpha_{(\lambda,\lambda')}$ -component of X containing x for each $x \in X$.
- (b) Each $\alpha_{(\lambda,\lambda')}$ -connected subset of X is contained in exactly one $\alpha_{(\lambda,\lambda')}$ -component of X.
- (c) If the operations λ and λ' are α -regular, then every $\alpha_{(\lambda,\lambda')}$ -connected subset of X which is both $\alpha_{(\lambda,\lambda')}$ -open and $\alpha_{(\lambda,\lambda')}$ -closed is $\alpha_{(\lambda,\lambda')}$ -component of X.
- (d) Every $\alpha_{(\lambda,\lambda')}$ -component of X is $\alpha_{(\lambda,\lambda')}$ -closed subset of X.

Proof.

- (a) Let $x \in X$ and $\mathcal{P} = \{P_i : i \in I\}$ be a collection of $\alpha_{(\lambda,\lambda')}$ -connected subsets of X containing x. Take $P = \cup P_i$. Then P is $\alpha_{(\lambda,\lambda')}$ -connected and $x \in P$. Suppose $P \subset P^*$ for some $\alpha_{(\lambda,\lambda')}$ -connected subset P^* of X. Then $x \in P^*$ and P^* is an element of \mathcal{P} . This implies $P^* \subset P$. That is $P^* = P$. Therefore P is $\alpha_{(\lambda,\lambda')}$ -component of X.
- (b) Let P be a $\alpha_{(\lambda,\lambda')}$ -connected subset of X which is not a $\alpha_{(\lambda,\lambda')}$ -component of X. Suppose P_1 and P_2 are $\alpha_{(\lambda,\lambda')}$ -components of X such that $P \subset P_1$ and $P \subset P_2$. Since $P \subset P_1 \cap P_2$, that is $P_1 \cap P_2 \neq \emptyset$. Therefore $P_1 \cup P_2$ is $\alpha_{(\lambda,\lambda')}$ -connected and contains P_1 and P_2 . This is a contradiction to P_1 and P_2 are $\alpha_{(\lambda,\lambda')}$ -components. Therefore P is contained in exactly one $\alpha_{(\lambda,\lambda')}$ -component of X.
- (c) Suppose M is $\alpha_{(\lambda,\lambda')}$ -connected subset of X which is both $\alpha_{(\lambda,\lambda')}$ -open and $\alpha_{(\lambda,\lambda')}$ -closed. By (b), M is contained in exactly one $\alpha_{(\lambda,\lambda')}$ -component P of X. If M is a proper subset of P, then $P = (P \cap M) \cup (P \cap (X \setminus M))$ is a $\alpha_{(\lambda,\lambda')}$ -disconnection of P. This is a contradiction. Thus M = P. Therefore M is $\alpha_{(\lambda,\lambda')}$ -component of X.

(d) Suppose the $\alpha_{(\lambda,\lambda')}$ -component P of X is not $\alpha_{(\lambda,\lambda')}$ -closed. Then $\alpha_{(\lambda,\lambda')}$ -cl(P) is $\alpha_{(\lambda,\lambda')}$ -connected and containing $\alpha_{(\lambda,\lambda')}$ -component P of X. This implies $P = \alpha_{(\lambda,\lambda')}$ -cl(P). Therefore P is $\alpha_{(\lambda,\lambda')}$ -closed.

Definition 3.10. A topological space (X, τ) is $\alpha_{(\lambda, \lambda')}$ -locally connected if for every point $x \in X$ and every $\alpha_{(\lambda, \lambda')}$ -open set M containing x, there is a $\alpha_{(\lambda, \lambda')}$ -connected and $\alpha_{(\lambda, \lambda')}$ -open set O such that $x \in O \subset M$.

Example 3.11. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}.$ Define λ and λ' on $\alpha O(X)$ by

$$\lambda(M) = \left\{ \begin{array}{ll} M & \text{if } d \in M \\ M \cup \{d\} & \text{if } d \notin M \end{array} \right.$$

and

$$\lambda'(M) = \left\{ \begin{array}{ll} M & \text{if } c \in M \\ M \cup \{c\} & \text{if } c \notin M \end{array} \right.$$

In this topological space, $\alpha_{(\lambda,\lambda')}$ -open sets are \emptyset , X and $\{a,c,d\}$. Clearly X is $\alpha_{(\lambda,\lambda')}$ -locally connected.

Theorem 3.12. If X is $\alpha_{(\lambda,\lambda')}$ -locally connected, then X has a base with $\alpha_{(\lambda,\lambda')}$ -connected and $\alpha_{(\lambda,\lambda')}$ -open sets.

Proof. Let \mathcal{M} be the collection of all $\alpha_{(\lambda,\lambda')}$ -connected and $\alpha_{(\lambda,\lambda')}$ -open subsets of X. Let $x \in X$ and let O be $\alpha_{(\lambda,\lambda')}$ -open set containing x. Since X is $\alpha_{(\lambda,\lambda')}$ -locally connected, there exists $\alpha_{(\lambda,\lambda')}$ -connected and $\alpha_{(\lambda,\lambda')}$ -open set $M \in \mathcal{M}$ such that $x \in M \subset O$. This implies O is the union of elements of \mathcal{M} . Therefore \mathcal{M} is a base for the collection of all $\alpha_{(\lambda,\lambda')}$ -open sets of X.

Theorem 3.13. $\alpha_{(\lambda,\lambda')}$ -locally connectedness is $\alpha_{(\lambda,\lambda')}$ -open hereditary.

Proof. Let M be $\alpha_{(\lambda,\lambda')}$ -open subset of X containing x and let O be $\alpha_{(\lambda,\lambda')}$ -open set such that $x \in O \subset M$. Then O is $\alpha_{(\lambda,\lambda')}$ -open set containing x in X. Since X is $\alpha_{(\lambda,\lambda')}$ -locally connected, there exists $\alpha_{(\lambda,\lambda')}$ -open set W containing x such that $x \in W \subset O$. W is $\alpha_{(\lambda,\lambda')}$ -connected and $\alpha_{(\lambda,\lambda')}$ -open set containing x such that $x \in W \subset O \subset M$. Therefore M is $\alpha_{(\lambda,\lambda')}$ -locally connected.

Example 3.14.

- (1) Sierpinski space, $(X = \{0, 1\}, \tau = \{\phi, X, \{1\}\})$, with the operations defined by $\lambda(M) = \operatorname{cl}(M)$ and $\lambda'(M) = M$ is both $\alpha_{(\lambda, \lambda')}$ -connected and $\alpha_{(\lambda, \lambda')}$ -locally connected.
- (2) R, the set of real numbers with discrete topology on R and the operations defined on $\alpha O(R)$ by $\lambda(M) = \operatorname{cl}(M)$ and $\lambda'(M) = M$ is neither $\alpha_{(\lambda,\lambda')}$ -connected nor $\alpha_{(\lambda,\lambda')}$ -locally connected.

(3) In R with usual topology with operations $\lambda(M)=M$ and $\lambda'(M)=cl$ (M), the subspace $Y=[-1,0)\cup(0,1]\subset R$ is $\alpha_{(\lambda,\lambda')}$ -locally connected but not $\alpha_{(\lambda,\lambda')}$ -connected.

4. μ_{Ω} -Compact Spaces

 μ_{Ω} -compact space was defined and some properties of μ_{Ω} -compact spaces were examined in this section.

Lemma 4.1. γ -operation is a restriction of λ -operation.

Proof. Let M be an open set. Then M is an α -open set. Therefore $\tau \subset \alpha O(X)$. Thus, $\lambda_{\tau} = \gamma$.

It is clear that λ -operation need not be γ -operation.

Example 4.2. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$. In this topological space α -open sets are \emptyset , X, $\{a\}$, $\{d\}$, $\{a,d\}$, $\{b,d\}$, $\{a,b,d\}$, $\{a,c,d\}$.

In the above example Ω -open sets are $\{b,c,d\}$ and $\{b,d\}$.

Here $\{b,c,d\}$ is Ω -open but not open and $\{d\}$ is open but not Ω -open.

Therefore open and Ω -open are independent.

Similarly $\{a,c,d\}$ is α -open but not Ω -open and $\{b,c,d\}$ is Ω -open but not α -open. Therefore α -open and Ω -open are independent.

Theorem 4.3. Let (X, τ) be a topological space with an operation γ on τ , $Y \subset X$ and let M be a γ -open subset of X. Then $M \cap Y$ is γ -open in Y if $\gamma(O) \subset M \Rightarrow \gamma(O \cap Y) \subset M \cap Y$ for all $O \in \tau$.

Proof. Let M be a γ -open subset in X. Then for all $x \in M$ there exists an open set O of X containing x such that $\gamma(O) \subset M$. By assumption, $\gamma(O \cap Y) \subset M \cap Y$. Since $O \cap Y$ is open in Y and $M \cap Y \subset M$, for all $x \in M \cap Y$ there exists an open set O of X such that $\gamma(O \cap Y) \subset M \cap Y$. Thus $M \cap Y$ is γ -open in Y.

Corollary 4.4. If Y is open in X, then γ -open sets in Y are γ -open in X.

Definition 4.5. An operation μ on $\Omega O(X)$ is stable if μ induces an operation $\mu_Y : \Omega_Y O(X) \to \mathcal{P}(X)$ such that $\mu_Y (M \cap Y) = \mu(M) \cap Y$ for every $M \in \Omega O(X)$ where $\Omega_Y O(X) = \{M \cap Y : M \in \Omega O(X)\}.$

Example 4.6. Let $X = \{a, b, c, d\}$ and let $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. In this topological space, Ω -open sets are $\{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}$. Define μ on $\Omega O(X)$ by

$$\mu(M) = \left\{ \begin{array}{ll} M \cup \{b\} & \text{if } M = \{d\} \\ M & \text{if } M \neq \{d\} \end{array} \right.$$

Let $Y = \{b,c,d\}$. Then the operation μ is stable with respect to Y.

Proposition 4.7. Let $\mu: \Omega O(X) \to \mathcal{P}(X)$ be an operation satisfying the following conditions:

- (1) $M \subset \mu(M)$ for all $M \in \Omega O(X)$.
- (2) $\mu(\emptyset) = \emptyset$.

If μ is stable with respect to all proper Ω -closed subsets of X, then μ is an identity operation.

Proof. Let M be a proper Ω -open subset of X. Then $M^c = P$ is Ω -closed. Since μ is stable,

$$\mu(M) \cap P = \mu_P(M \cap P)$$

$$= \mu_P(\emptyset)$$

$$= \mu_P(\emptyset \cap P)$$

$$= \mu(\emptyset) \cap P$$

$$= \emptyset \cap P = \emptyset.$$

This implies $\mu(M) \subset M$. Therefore $\mu(M) = M$.

Theorem 4.8. Let (X, τ) be a topological space with an operation μ on $\Omega O(X)$, $Y \subset X$ and let M be a μ_{Ω} -open subset of X. Then $M \cap Y$ is μ_{Ω} -open in Y if $\mu(O) \subset M \Rightarrow \mu(O \cap Y) \subset M \cap Y$ for all $O \in \Omega O(X)$.

Proof. Let M be a μ_{Ω} -open subset in X. Then for all $x \in M$ there exists an Ω -open set O of X containing x such that $\mu(O) \subset M$. By assumption, $\mu(O \cap Y) \subset M \cap Y$. Since $O \cap Y$ is Ω -open in Y and $M \cap Y \subset M$, for all $x \in M \cap Y$ there exists an Ω -open set O of X such that $\mu(O \cap Y) \subset M \cap Y$. Thus, $M \cap Y$ is μ_{Ω} -open in Y.

Definition 4.9. Let (X, τ) be a topological space with an operation μ on $\Omega O(X)$. Then X is μ_{Ω} -compact if for every Ω -open cover \mathcal{O} of X, there exists a finite sub collection $\{O_1, O_2, ..., O_n\}$ of \mathcal{O} such that $X = \bigcup_{i=1}^n \mu(O_i)$.

Example 4.10. Let (N, τ) be a discrete topological space where N is the set of natural numbers. Define the operation μ on $\Omega O(X)$ by $\mu(M) = N$ for all $M \in \mathcal{N}$. This topological space is μ_{Ω} -compact.

Remark 4.11. μ_{Ω} -closed subset of μ_{Ω} -compact space is μ_{Ω} -compact.

Theorem 4.12. μ_{Ω} -compact subset of a μ_{Ω} - T_2 space is μ_{Ω} -closed if the operation is μ_{Ω} -regular.

Proof. Let M be a μ_{Ω} -compact subset of X. Claim M is μ_{Ω} -closed. Let $x \in M^c$. For all $y \in M$, there exist Ω -open sets P and Q such that $x \in P$, $y \in Q$ and

 $\mu(P) \cap \mu(Q) = \emptyset$. Using these Ω -open sets, we can construct a Ω -open cover $\{O_y : y \in M\}$ of M. Since M is μ_{Ω} -compact, there exists a finite collection $\{O_1, O_2, ... O_n\}$ such that $M \subset \bigcup_{i=1}^n \mu(O_i)$. Let $O = \bigcap_{i=1}^n O_i$. Then O is Ω -open set containing X. Since $O_1, O_2, ... O_n$ are Ω -open sets containing X and Ω is Ω -regular, there exists Ω -open set Ω such that Ω copen. Therefore Ω is Ω -closed.

Theorem 4.13. Let (X,τ) be a topological space with an operation μ on $\Omega O(X)$ which is stable with respect to Y where $Y \subset X$. If X is μ_{Ω} -compact and Y is μ_{Ω} -closed, then Y is μ_{Ω_Y} -compact.

Proof. Let $\phi = \{O_i\}_{i \in I}$ be a Ω -open cover of Y by $\Omega_Y O(Y)$ -open sets. Let $\phi^* \subset \Omega O(X)$ be the set of all Ω -open sets such that for all $M \in \phi^*$, $M \cap Y \in \phi$. Since $X \setminus Y$ is μ_{Ω} -open, take a Ω -open cover of $X \setminus Y$ say $\chi = \{N_x \in \Omega O(X) : \mu(N_x) \subset X \setminus Y, x \in X\}$. Then the collection $\phi^* \cup \chi$ is a Ω -open cover of X. Since X is μ_{Ω} -compact, there exist a finite subcollection $\{O_1, O_2, \ldots, O_m\} \subset \phi^*$ and $\{N_1, N_2, \ldots, N_n\} \subset \chi$ such that

$$X = \{ \bigcup_{i=1}^{m} \mu(O_i) \} \cup \{ \bigcup_{j=1}^{n} \mu(N_j) \}.$$

Then

$$Y = \{ \cup_{i=1}^{m} \mu(O_i) \cap Y \} \cup \{ \cup_{j=1}^{n} \mu(N_j) \cap Y \}.$$

Since $\mu(N_j) \cap Y = \emptyset$ for j = 1, 2, ..., n and μ is stable with respect to Y,

$$Y = \{ \bigcup_{i=1}^{m} \mu_Y(O_i \cap Y) \}.$$

Therefore Y is μ_{Ω_Y} -compact.

Theorem 4.14. Let M be a subset of X and let $\mu : \Omega O(X) \to \mathcal{P}(X)$ and $\mu_M : \Omega_M O(M) \to \mathcal{P}(M)$ be operations satisfying $\mu_M(O \cap M) \subset \mu(O) \cap M$ for any Ω -open subset O of X such that $M \cap O \neq \emptyset$. If M is μ_{Ω_M} -compact, then M is μ_{Ω} -compact. Proof. Let \mathcal{O} be Ω -open cover of M. Then $\{O \cap M : O \in \mathcal{O}\} \subset \Omega_M O(M)$ is a Ω_M -open cover of M. Therefore there exists a finite collection $\{O_1, O_2, ...O_n\}$ of \mathcal{O} such that $M = \bigcup_{i=1}^n \mu_M(O_i \cap M) \subset \bigcup_{i=1}^n \mu(O_i) \cap M \subset \bigcup_{i=1}^n \mu(O_i)$. Therefore M is μ_{Ω} -compact.

5. Conclusion

In this article, we proved that, In a topological space X, there is exactly one $\alpha_{(\lambda,\lambda')}$ component of X containing a particular element x. Also we established that, $\alpha_{(\lambda,\lambda')}$ -locally connectedness is an $\alpha_{(\lambda,\lambda')}$ -open hereditary and we conclude that γ -operation defined by Ogata is an restriction of λ -operation. We proven

that Sierpinski space with particular operation is both $\alpha_{(\lambda,\lambda')}$ -connected and $\alpha_{(\lambda,\lambda')}$ -locally connected. Also we defined and investigated the properties of μ_{Ω} -compact spaces with illustrative examples.

References

- [1] Ahmad N. and Assad B. A., More properties of an operation on semi generalized open sets, Italian Journal of Pure and Applied Mathematics, 39 (2018), 608-627.
- [2] Asaad B. A., Some Applications of Generalized open sets via Operations, New Trends in Mathematical Sciences, 5(1) (2017), 145-157.
- [3] Asaad B. A., Ahmad Nazihah and Omar Zurni, γ -Open Sets and γ -Extremally Disconnected Spaces, Mathematical Theory and Modeling, 3(12) (2013), 132-141.
- [4] Asaad B. A. and Ahmad N., Further characterizations of γ -extremally disconnected spaces, International Journal of Pure and Applied Mathematics, 108 (3) (2016), 533-549.
- [5] Asaad B. A. and Ahmad N., Operation on semi generalized open sets with its separation axioms, AIP Conference Proceedings 1905, 020001 (2017).
- [6] Asaad B. A. and Ameen Z. A., Some properties of an operation on $g\alpha$ open sets, New Trends in Mathematical Sciences, 7(2) (2019), 150-158.
- [7] Asaad B. A., Al-shami T. M. and Abo-Tabi E. A., Applications of some operators on supra topological spaces, Demonstratio Mathematica, 53(1) (2021), 292-308.
- [8] Basu C. K., Afsan B. M. U. and Ghosh M. K., A Class of Functions and Separation Axioms with respect to an Operation, Hacettepe Journal of Mathematics and Statistics, 38(2) (2009), 103-118.
- [9] Bhattacharyya P. and Lahiri B. K., Semi-generalized closed Sets in Topology, Indian J. Math., 29(3) (1987), 375-382.
- [10] Carpintero C., Rajesh N. and Rosas E., Operation Approaches on b-open sets and Applications, Bol. Soc. Paran. Mat., 30(1) (2012), 21-33.
- [11] Hussain S. and Ahmad B., Bi (γ, γ') -Operations in Topological Spaces, Math. Today, 22(1) (2006), 21-36.

- [12] Ibrahim H. Z., On $\alpha_{(\lambda,\lambda')}$ -open sets in topological spaces, New trends in Mathematical Sciences 2(6) (2018), 150-158.
- [13] Ibrahim H. Z., On a Class of α_{γ} -Open Sets in a Topological Spaces, Acta Scientiarum, 35(3) (2013), 539-545.
- [14] Kalaivani N. and Krishnan G. S. S., On α_{γ} -Open Sets in Topological Spaces, Proceedings of ICMCM, (2016), 370-376.
- [15] Kasahara S., Operation Compact Spaces, Math. Japonica, 24(1) (1979), 97-105.
- [16] Khalaf A. B., Jafari S. and Ibrahim H. Z., Bioperations on α -Open Sets in Topological Spaces, International Journal of Pure and Applied Mathematics, 103(4) (2015), 653-666.
- [17] Krishnan G. S. S. and Balachandran K., On a Class of γ -preopen sets in a Topological Space, East Asian Math. J., 22(2) (2006), 131-149.
- [18] Krishnan G. S. S. and Balachandran K., On γ -semiopen sets in Topological Spaces, Bull. Cal. Math. Soc., 98(6) (2006), 517-530.
- [19] Lellis Thivagar M. and Anbuchelvi M., A Note on Ω -Closed Sets in Topological Spaces, Mathematical Theory and Modeling, (2) (2012), 50-58.
- [20] Levine N., Semi-open sets and semi-continuity in Topological Spaces, Amer. Math. Monthly., 70(1) (1963), 36-41.
- [21] Meenarani S. M., Poorani K. and Anbuchelvi M., Operation on Ω -closed sets, Malaya Journal of Mathematik, 5(1) (2019), 7-11.
- [22] Munkres J. R., Topology-A First Course, Pearson Education Inc., Singapore (2000).
- [23] Njastad O., On Some Classes of Nearly Open Sets, Pacific J. Math., 15 (2009), 961-970.
- [24] Ogata S., Operation on Topological Spaces and Associated Topology, Math. Japonica, 36(1) (1991), 175-184.
- [25] Rajesh N. and Vijayabharathi V., On $(\gamma \gamma')$ -connected spaces, Bulletin of International Mathematical Virtual Institute, 1 (2011), 59-65.

- [26] Rosas E. and Vielma J., Operator-Compact and Operator-Connected Spaces, Scienciae Mathematicae, 1(2) (1998), 203-208.
- [27] Umhera J., Maki H. and Noiri T., Bioperation on Topological Spaces and Some Separation Axioms, Mem. Fac. Sci. Kochi Univ., Ser. A. (Math.), 13 (1992), 45-59.